Primes and power-primes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The power digraphs of safe primes

A power digraph, denoted by $G(n,k)$, is a directed graph with $Z_{n}={0,1,..., n-1}$ as the set of vertices and $L={(x,y):x^{k}equiv y~(bmod , n)}$ as the edge set, where $n$ and $k$ are any positive integers. In this paper, the structure of $G(2q+1,k)$, where $q$ is a Sophie Germain prime is investigated. The primality tests for the integers of the form $n=2q+1$ are established in terms of th...

متن کامل

Power Totients with Almost Primes

A natural number n is called a k-almost prime if n has precisely k prime factors, counted with multiplicity. For any fixed k > 2, let Fk.X/ be the number of k-th powers m 6 X such that !.n/ D m for some squarefree k-almost prime n, where !. ! / is the Euler function. We show that the lower bound Fk.X/ " X=.log X/ holds, where the implied constant is absolute and the lower bound is uniform over ...

متن کامل

the power digraphs of safe primes

a power digraph, denoted by $g(n,k)$, is a directed graph with $z_{n}={0,1,..., n-1}$ as the set of vertices and $l={(x,y):x^{k}equiv y~(bmod , n)}$ as the edge set, where $n$ and $k$ are any positive integers. in this paper, the structure of $g(2q+1,k)$, where $q$ is a sophie germain prime is investigated. the primality tests for the integers of the form $n=2q+1$ are established in terms of th...

متن کامل

Catalan Numbers, Primes and Twin Primes

with C0 = 1. Their appearances occur in a dazzling variety of combinatorial settings where they are used to enumerate all manner of geometric and algebraic objects (see Richard Stanley’s collection [28, Chap. 6]; an online Addendum is continuously updated). Quite a lot is known about the divisibility of the Catalan numbers; see [2, 10]. They are obviously closely related to the middle binomial ...

متن کامل

Small Gaps between Primes or Almost Primes

Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that lim inf n→∞ (pn+1 − pn) log pn = 0. We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of exactly two distinct primes. We prove that lim inf n→∞ (qn+1 − qn) ≤ 26. If an appropriate generalization of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1989

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-58-1-145-150